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Overview

•Causality is a central concept in many research domains, and there are many
mathematical frameworks that encode causal information, but there is no univer-
sally accepted axiomatisation of it.

•We view the concept of causality both as an extension of probability theory, and
as a study of what happens to a system when we manipulate on a subsystem.

•Based on these two main ideas, we propose causal spaces as an axiomatic frame-
work of causality.

•Causal spaces not only strictly generalise existing frameworks, but it also sheds light
on long-standing limitations of existing frameworks (e.g. structural causal models
(SCMs) or the potential outcomes framework) including, for example cyclic causal
relationships, latent variables and continuous-time stochastic processes.

Causality as an extension of Probability Theory
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Fig. 1: Statistics is an inverse problem of probability theory.
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Fig. 2: Causal discovery is an inverse problem of reasoning.
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Fig. 3: Pearl’s ladder of causation (bottom two rungs)

Causal Spaces

Let T be any index set, P(T ) its power set, and for S ⊆ T ,
let HS be the sub-σ-algebra of H corresponding to S.
A causal space is the quadruple (Ω,H,P,K), where:

• (Ω,H,P) = (×t∈TEt,⊗t∈TEt,P) is a probability space;

•K = {KS : S ∈ P(T )} is a collection of transition
probability kernels KS from (Ω,HS) into (Ω,H), called
the causal kernel on HS, such that

(i) for all A ∈ H and ω ∈ Ω,

K∅(ω,A) = P(A);
(ii) for all A ∈ HS and ω ∈ Ω,

KS(ω,A) = 1A(ω).

P is the observational measure.

Interventions

Intervention is the process of choosing a sub-σ-algebra HU and placing any measure
Q on (Ω,HU). Then we have a new causal space (Ω,H,Pdo(U,Q),Kdo(U,Q)), where

Pdo(U,Q)(A) =

∫
Q(dω)KU(ω,A) (1)

and Kdo(U,Q) = {Kdo(U,Q)
S : S ∈ P(T )} with

K
do(U,Q)
S (ω,A) =

∫
Q(dω′

U\S)KS∪U((ωS, ω
′
U\S), A). (2)
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Fig. 5: Observational state.
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Fig. 6: Intervention.
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Fig. 7: New state after intervention.

Intuition on the axioms

(i) Intervening on nothing leaves the measure intact, Pdo(∅,Q)(A) = P(A).
(ii) Intervening on a sub-σ-algebra returns a measure which, when restricted to that

sub-σ-algebra, is precisely the measure we give it, Pdo(U,Q)(A) = Q(A) forA ∈ HU .

How is the causal information encoded?

SCMs: X = fX(...)
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Fig. 8: The encoded causal information is how the system

affects a sub-system.

Causal Spaces: KX(x, ...) = ...
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Fig. 9: The encoded causal information is how a

sub-system affects the system.

What are the primitive objects?

SCMs

• Set of variables X1, ..., Xn.

•Noise distribution.
• Structural equations Xi = fi(...).

•The system is deterministic.

•Observational and interventional distri-
butions are derived from these objects.

Causal Spaces

•Probability space (Ω,H,P).
•Causal kernels KS.

•The system is stochastic.

•Observational (via P) and interventional
distributions (via the causal kernels) are
the primitive objects.

Example: Latent Variables

Causal Space: (Eice × Eacc,Eice ⊗ Eacc,P, {K∅, Kice, Kacc, Kice,acc}). P has correlation.

Fig. 10: Ice cream sales by month Fig. 11: Fatal rip current accidents by month

Kice(x,A) = P(A) for all A ∈ Eacc and Kacc(y,B) = P(B) for all B ∈ Eice.

Example: Cyclic Causal Relationship

Causal Space: (Erice × Eprice,Erice ⊗ Eprice,P, {K∅, Krice, Kprice, Krice,price}).
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Fig. 12: Cyclic Causal Relationship

Fig. 13: Krice(3, p) =
1√
2π
e−

1
2(p−4.5)2.

Fig. 14: Observational Measure, P

Fig. 15: Kprice(6, r) =
1√
2π
e−

1
2(r−4)2.

Example: Continuous-Time Stochastic Process

Causal Space: (×t∈R+
Et,⊗t∈R+

Et,P,K). P is the Wiener measure.

Fig. 16: The left plot shows intervening at time 1, whereas the right plot shows conditioning at time 1.
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1√

2π(t−s)
e−

1
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1
2sy
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Past values affect the future, but future values do not affect the past.


