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Overview

e Causality is a central concept in many research domains, and there are many
mathematical frameworks that encode causal information, but there is no univer-
sally accepted axiomatisation of it.

e We view the concept of causality both as an extension of probability theory, and
as a study of what happens to a system when we manipulate on a subsystem.

e Based on these two main ideas, we propose causal spaces as an axiomatic frame-
work of causality:.

e Causal spaces not only strictly generalise existing frameworks, but it also sheds light
on long-standing limitations of existing frameworks (e.g. structural causal models
(SCMs) or the potential outcomes framework) including, for example cyclic causal
relationships, latent variables and continuous-time stochastic processes.

Causality as an extension of Probability Theory
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Fig. 1: Statistics is an inverse problem of probability theory:.
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Fig. 3: Pearl’s ladder of causation (bottom two rungs)
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Fig. 2: Causal discovery is an inverse problem of reasoning.

Causal Spaces

Let T be any index set, P(T) its power set, and for S C T,
let Hg be the sub-o-algebra of H corresponding to S.
A causal space is the quadruple (2, H, P, K), where:

o (C),H, P)
= {Kg : S € P(T)} is a collection of transition

probability kernels Kg from (€2, Hg) into (€2, H), called
the causal kernel on Hg, such that

(i) for all A € 3 and w € €,
Ky(w, A) = P(A);
(ii) for all A € Hg and w € €,

= (XterEt, ®ierEy, P) is a probability space;

Kg(w, A) = 1a(w).

P 1s the observational measure.
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Interventions

Intervention is the process of choosing a sub-o-algebra H;; and placing any measure
Q on (2, H7). Then we have a new causal space (€2, J, PLUQ) KUQ) where

poQ)( /Q (dw)Kpy(w, A) (1)
and K©UQ = (KUY g c p(T)} with
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Fig. 5: Observational state.

Fig. 6: Intervention. Fig. 7. New state after intervention.

Intuition on the axioms

(i) Intervening on nothing leaves the measure intact, P@Q(A) = P(A).

(ii) Intervening on a sub-o-algebra returns a measure which, when restricted to that
sub-c-algebra, is precisely the measure we give it, PR A) = Q(A) for A € Hy;.

How i1s the causal information encoded?

SCMs: X = fx(.. Causal Spaces: Kx(x —
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Fig. 8: The encoded causal information is how the system Fig. 9: The encoded causal information is how a

affects a sub-system. sub-system affects the system.

What are the primitive objects?

SCMs Causal Spaces
o Set of variables X, ..., Xy e Probability space (€2, JH, P).
e Noise distribution. e Causal kernels K.

e Structural equations X; = f;(...). e The system is stochastic.

e The system is deterministic. e Observational (via IP) and interventional

e Observational and interventional distri- distributions (via the causal kernels) are
butions are derived from these objects.  the primitive objects.
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Example: Latent Variables

Causal Space: (Fice X Eace, €ice @ Eaces Py { Kypy Kice, Kace, Kiceace ;). P has correlation.
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Fig. 10: Ice cream sales by month

Kico(x, A) =P(A) for all A € €, and
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Fig. 11: Fatal rip current accidents by month

K..ly, B) =P(B) for all B € Ei.

Example: Cyclic Causal Relationship

Causal Space: (Erice X Epricea 8rice X 8p1“i(:€7 IP); {K(Da Kricea Kprioea Krice,price})-
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Fig. 12: Cyclic Causal Relationship
Fig. 14: Observational Measure, P
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Example: Continuous-Time Stochastic Process
Causal Space: (Xier, By, Qier, €1, P, K). P is the Wiener measure.
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Fig. 16: The left plot shows intervening at time 1, whereas the right plot shows conditioning at time 1.
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Past values affect the future, but future values do not affect the past.

For any s < t, K(x,y) =
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