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J What is the role of human experts in the era of Al? [ Collaborative and Explainable BO (CoExBO) J Explanability
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- You can help Al.

Find the best electrolyte material from the below:

- Atleast you wish to intervene in ﬁure! Here 1s my current GP and user preference. \ LiPF
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The quality of experts’ advice varies.
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because 1t explores more uncertain region.
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. How can human experts help Al? P 4 . - - explanation
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. . . . . . = IT human suggestions are mostly correct, it will accelerate convergence.
suggestions. (But if human is such points. (Human is just acting as a 1 ar%;?(amft (z) (standard UCB) 56 4 5
strong, why do we need BO?) weaker BO, no communication.) T = argmaxaj, s, (z) (% incorporated UCB) ‘Theorem (Acceleration guarantee) A
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