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O U t “ . Prediction Tdentity Grad Conﬁg-iiimizer IG Grad-CAM

lo | model e . I
: . rediction explanation | o

reg. @ (trained) P | P ol

, | E 0.4

I'TEz measures the total effect (direct & indirect effect). How ‘ * M * {’?’ @’
v Mmmmm&a& ol 4444 R | TR YT

ITEp(x)

ITEp(2)

Intervening on factors (H, X) allow for studying their
treatment effect (i.e., causal influence) on down-stream
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Figure 4. Comparison of ITE values of hoptimizer ON Y (left) and E (right) for models across different performance buckets.
Interestingly, ITEg differs across accuracy buckets. More importantly, none of the explainability methods resemble ITEy.
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Explainability is a critical aspect in the lifecycle of machine learning (ML) models. effectofh=nwrth#nonzre X 06
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Various factors including data, random initialization, model predictions (Y’), and training offect of hy = nwrth; £nonz € X ‘ "

hyperparameters (H) have significant effects on explanations (E). G g | L e o

Explanation Method

We lack understanding as to what ML explanation methods can and cannot do.

. : Kernelized treatment effect Yi(x) — o(Yi(x))|le = k(Y (2), Yy (2 = ldenity
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Using the Potential Outcomes framework [Rubin, 2005], we systematically examine the (In)Direct treatment effect of H on E total effect: ITEg,y = f(z) \ = | 02
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By meagurmg the treatment effect when mter\/enmg on their causal nredecessors (H), We INdirect effect: /A above Cirn e e e N e e ) NI A M A R
introduce a causally-based quantitative metric for investigating the relationship between Figure 5. (left) Each column is a subset of models at each accuracy bucket, each row is a different explanation method.

Y and E. O bse rvatiO na | Stu dy Whereas low-performing CIFAR10 models (first column) show little change in predictions as their explanations differ,

top-performing models show the reverse of this trend. (right) Correlation measures of the scatter plots on the left.

Conclusion: explanations might be providing insights beyond just the model prediction. - Pearson Corr Delta Peasson Cors. Diff. Delta Pesrson Corr
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