MAX PLANCK INSTITUTE
On the Relationship Between Explanation \& Prediction: A Causal View ETHzürich : : \% Google AI

Amir-Hossein Karimi, Krikamol Muandet, Simon Kornblith, Bernhard Schölkopf, Been Kim

Explainability is a critical aspect in the lifecycle of machine learning (ML) models. We lack understanding as to what ML explanation methods can and cannot do Various factors including data, random initialization, model predictions (Y), and training hyperparameters (H) have significant effects on explanations (E).
Previous research [Adebayo et al., 2018] suggests a weak correlation between E and Y, calling for a definitive study to quantify this relationship.

Using the Potential Outcomes framework [Rubin, 2005], we systematically examine the relationship between Y and E.
By measuring the treatment effect when intervening on their causal predecessors (H), we introduce a causally-based quantitative metric for investigating the relationship between Y and E.
Conclusion: explanations might be providing insights beyond just the model prediction.

References

Julius Adebayo, Justin Gilmer, Michael Muelly, lan Goodfellow, Moritz Hardt, and Been Kim. Sanity checks for saliency maps. Advances in neural information processing systems, 31, 2018 Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100(469):322-331, 2005.
Observational Study

Single binary treatment effect
Single non-binary treatment effect
Multiple non-binary treatment effect
Kernelized treatment effect
(In)Direct treatment effect of H on E

$Y_{h=1}^{*}(x)-Y_{h=0}^{*}(x)$
effect of $h=1$ wrt $h=0$ on $x \in X$
$\mathbb{E}_{m \neq n}\left[Y_{h=n}^{*}(x)-Y_{h=m}^{*}(x)\right]$
effect of $h=n$ w.r.t $h \neq n$ on $x \in X$
$\mathbb{E}_{h_{i 八} i}\left[\mathbb{E}_{m \neq n}\left[Y_{\left[h_{i}=n, h_{i, j}\right.}^{*}(x)-Y_{\left[h_{i}=m, h_{i j}\right]}^{*}(x)\right]\right]$
effect of $h_{i}=n$ w.r.t $h_{i} \neq n$ on $x \in X$
$\left\|\phi\left(Y_{h}^{*}(x)\right)-\phi\left(Y_{h^{\prime}}^{*}(x)\right)\right\|_{\mathcal{G}}^{2}=k\left(Y_{h}^{*}(x), Y_{h}^{*}(x)\right)$ $-2 k\left(Y_{h}^{*}(x), Y_{h^{*}}^{*}(x)\right)$
$+k\left(Y^{*}(x), Y^{*}(x)\right)$
total effect: $I T E_{F}, y=f(x)$
direct effect: $I T E_{B} y \neq f(x)$ directeffect: Δ above
dy

4 datasets	MNIST, FASHION, SVHN, CIFAR10
8 hyparparameters	drawn "indep. at random" from pre-specified ranges
	Fixed architecture. Fixed random seed.
30,000 pre-trained models	3 -layer CNNs (4,970 parameters)
	trained to convergence (max 86 epochs)
$4+1$ saliency-based explanations	Gradient, SmoothGrad, Integrated Gradients, Grad-CAM Reference $E:$ "identity", i.e., $E=Y \Longrightarrow I T E_{E}=I T E_{Y}$

Experiments

Figure 5 . (left) Each column is a subset of models at each accuracy bucket, each row is a different explanation method. Whereas low-performing CIFAR10 models (first column) show litte change in predictions as their explanations differ,

Figure 6. Pearson correlation between $1 T E_{Y}$ and $I T E_{E}$ in total and direct effect (first column). The second column is the difference between total and direct effect, where higher values mean that the influence of H on E flows more through
ideal). The third column plots the difference in detta correlations between the ideal case (ldentity) and each method. ideal). The third column plots the difference in delta correlations between the ideal case (ldentity) and each mettor
other words, it indicates how far each method moves away from the ideal case, as a model pertorms better.

