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Motivation Contributions

Vector-valued Learning Problems

• There is a growing literature on learning vector-valued
functions:

• multi-task or multi-output learning;
• functional response models;
• kernel conditional mean embeddings;
• structured prediction;

• ...

• [Micchelli and Pontil, 2005], [Alvarez, 2011] – Algorithm for
learning vector-valued functions using operator-valued kernels.

• [Caponnetto and de Vito, 2007], [Ciliberto et al., 2020],
[Cabannes et al., 2021], [Singh et al., 2019] – Learning rates
using integral operator techniques for kernel methods.

• [Yousefi et al., 2018], [Li et al., 2019] – Vector-valued
extension of Rademacher complexities.
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Motivation Contributions

Empirical Process Theory for Vector-Valued Functions
• Empirical process theory is concerned with the empirical
measure Pn = 1

n

∑n
i=1 δXi

, and the stochastic process of the
form {Pnf − Pf : f ∈ F}.

• For example, we’re interested in questions such as whether

sup
f ∈F

∣∣∣∣∣∣1n
n∑

i=1

f (Xi )− E[f (X )]

∣∣∣∣∣∣ P→ 0.

• For a class G of functions g : X → Y, where Y is a Hilbert
space, we are interested in questions such as whether

sup
g∈G

∥∥∥∥∥∥1n
n∑

i=1

g(Xi )− E[g(X )]

∥∥∥∥∥∥
Y

P→ 0.
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Motivation Contributions

Metric Entropy

• Suppose (Z, ρ) is a metric space. For any δ > 0, the
δ-covering number of (Z, ρ), denoted by N(δ,Z, ρ), is the
minimum number of balls of radius δ with centres in Z
required to cover Z. We define the δ-entropy as
H(δ,Z, ρ) = logN(δ,Z, ρ).
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Motivation Contributions

Metric Entropy – Complexity of Function Classes

• For real-valued functions, the following classes of functions
have been identified to have good bounds on their metric
entropies:

• Finite-dimensional classes;
• Classes of smooth functions;
• Classes of functions of bounded variation;
• Classes of concave functions;

• ...

• Other measures of complexity also exist, such as the VC
dimension and entropy with bracketing.

• For vector-valued function classes, investigations on their
metric entropies have not received much attention.
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Motivation Contributions

Entropy of Vector-Valued Function Classes

Challenges

• If Y is infinite-dimensional, seemingly trivial function classes
such as the class of constant functions onto the unit ball,

G =
{
g(x) = y for all x ∈ X : y ∈ Y, ∥y∥Y ≤ 1

}
have infinite entropy.

• To have any chance, it is clear that the output range has to
be restricted in more than the norm sense.
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Motivation Contributions

Set-Up

• Let X be any input domain, and let the output space Y be a
(not necessarily finite-dimensional) Hilbert space.

• Let G be a class of Bochner-integrable functions g : X → Y.

• Let X be a random variable taking values in X , and X1,X2, ...
i.i.d. copies of it.
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Motivation Contributions

Fractal Dimensions

• Let E be a subset of (Z, ρ). The upper box-counting
dimension of E is

τbox(E ) := lim sup
δ→0

H(δ,E , ρ)

− log δ
.

• A subset E of (Z, ρ) is said to be (M, τ)-homogeneous (or
simply homogeneous) if the intersection of E with any closed

ball of radius R can be covered by at most M
(
R
r

)τ
closed

balls of smaller radius r .
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Motivation Contributions

Main Results

• Let m, d ∈ N, B ⊂ Y and X the unit cube in Rd .
• Let Gm

B be the set of m-times differentiable functions
g : X → Y such that:

• partial derivatives Dpg : X → Y of orders [p] ≤ m exist
everywhere on the interior of X , and

• Dpg(x) ∈ B for all x ∈ X and [p] ≤ m.

Theorem 4

Let B ⊂ Y be totally bounded and (M, τasd)-homogeneous. Then
for sufficiently small δ > 0, there exists some constant K
depending on KB , m, d , M and τasd such that

H
(
δ,Gm

B , ∥·∥∞
)
≤ Kδ−

d
m .
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Main Results

Theorem 5

Let B be a subset of Y with finite upper box-counting dimension
τbox. Then for sufficiently small δ > 0, there exists some constant
K depending on KB , m, d and τbox such that

H
(
δ,Gm

B , ∥·∥∞
)
≤ Kδ−

d
m log

(
1

δ

)
.

Theorem 6

Let B be a subset of Y with N(ϵ,B, ∥·∥Y) ≤ exp{Mϵ−τexp} for
some M, τexp > 0. Then for sufficiently small δ > 0, there is some
constant K depending on KB , m, d , M and τexp such that

H
(
δ,Gm

B , ∥·∥∞
)
≤ Kδ−(

d
m
+τexp).
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Motivation Contributions

Applications

• Uniform law of large numbers of Gm
B for B satisfying any of

the previous theorems.

• Regression with smooth functions, where the output space
itself consists of smooth (real-valued) functions, or any other
real-valued function classes with appropriately bounded
entropies.

• Kernel conditional mean embeddings, where the outputs
consist of functions taking values in an RKHS.
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Motivation Contributions

Summary

• Despite the growth of literature on vector-valued learning,
empirical process theory only exists for real-valued functions.

• Our work attempts to make some first steps in developing
empirical process theory for vector-valued functions.

• Future directions:
• entropy of function classes other than those of smooth

functions;
• infinite-dimensional input spaces;
• uniform central limit theorems;
• lower bounds... and many more.
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