Towards Empirical Process Theory for Vector-Valued Functions: Metric Entropy of Smooth Function Classes

Junhyung Park, Krikamol Muandet

Max Plank Institute for Intelligent Systems, Tübingen CISPA Helmholtz Center for Information Security, Saarbrücken

ALT 2023

Motivation

Contributions

- There is a growing literature on learning vector-valued functions:
 - multi-task or multi-output learning;
 - functional response models;
 - kernel conditional mean embeddings;
 - structured prediction;
 - •

- There is a growing literature on learning vector-valued functions:
 - multi-task or multi-output learning;
 - functional response models;
 - kernel conditional mean embeddings;
 - structured prediction;
 - •
- [Micchelli and Pontil, 2005], [Alvarez, 2011] Algorithm for learning vector-valued functions using operator-valued kernels.

- There is a growing literature on learning vector-valued functions:
 - multi-task or multi-output learning;
 - functional response models;
 - kernel conditional mean embeddings;
 - structured prediction;
 - :
- [Micchelli and Pontil, 2005], [Alvarez, 2011] Algorithm for learning vector-valued functions using operator-valued kernels.
- [Caponnetto and de Vito, 2007], [Ciliberto et al., 2020], [Cabannes et al., 2021], [Singh et al., 2019] Learning rates using integral operator techniques for kernel methods.

- There is a growing literature on learning vector-valued functions:
 - multi-task or multi-output learning;
 - functional response models;
 - kernel conditional mean embeddings;
 - structured prediction;
 - :
- [Micchelli and Pontil, 2005], [Alvarez, 2011] Algorithm for learning vector-valued functions using operator-valued kernels.
- [Caponnetto and de Vito, 2007], [Ciliberto et al., 2020], [Cabannes et al., 2021], [Singh et al., 2019] Learning rates using integral operator techniques for kernel methods.
- [Yousefi et al., 2018], [Li et al., 2019] Vector-valued extension of Rademacher complexities.

Empirical Process Theory for Vector-Valued Functions

• Empirical process theory is concerned with the empirical measure $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, and the stochastic process of the form $\{P_n f - Pf : f \in \mathcal{F}\}$.

Empirical Process Theory for Vector-Valued Functions

- Empirical process theory is concerned with the empirical measure $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, and the stochastic process of the form $\{P_n f Pf : f \in \mathcal{F}\}$.
- For example, we're interested in questions such as whether

$$\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n f(X_i)-\mathbb{E}[f(X)]\right|\stackrel{P}{\to} 0.$$

Empirical Process Theory for Vector-Valued Functions

- Empirical process theory is concerned with the empirical measure $P_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, and the stochastic process of the form $\{P_n f Pf : f \in \mathcal{F}\}$.
- For example, we're interested in questions such as whether

$$\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^n f(X_i)-\mathbb{E}[f(X)]\right|\stackrel{P}{\to} 0.$$

• For a class $\mathcal G$ of functions $g:\mathcal X\to\mathcal Y$, where $\mathcal Y$ is a Hilbert space, we are interested in questions such as whether

$$\sup_{g\in\mathcal{G}}\left\|\frac{1}{n}\sum_{i=1}^ng(X_i)-\mathbb{E}[g(X)]\right\|_{\mathcal{V}}\stackrel{P}{\to} 0.$$

Metric Entropy

• Suppose (\mathcal{Z}, ρ) is a metric space. For any $\delta > 0$, the δ -covering number of (\mathcal{Z}, ρ) , denoted by $N(\delta, \mathcal{Z}, \rho)$, is the minimum number of balls of radius δ with centres in \mathcal{Z} required to cover \mathcal{Z} . We define the δ -entropy as $H(\delta, \mathcal{Z}, \rho) = \log N(\delta, \mathcal{Z}, \rho)$.

Metric Entropy – Complexity of Function Classes

- For real-valued functions, the following classes of functions have been identified to have good bounds on their metric entropies:
 - Finite-dimensional classes;
 - Classes of smooth functions;
 - Classes of functions of bounded variation;
 - Classes of concave functions;
 - •

Metric Entropy – Complexity of Function Classes

- For real-valued functions, the following classes of functions have been identified to have good bounds on their metric entropies:
 - Finite-dimensional classes;
 - Classes of smooth functions;
 - Classes of functions of bounded variation;
 - Classes of concave functions;
 - :
- Other measures of complexity also exist, such as the VC dimension and entropy with bracketing.

Metric Entropy – Complexity of Function Classes

- For real-valued functions, the following classes of functions have been identified to have good bounds on their metric entropies:
 - Finite-dimensional classes;
 - Classes of smooth functions;
 - Classes of functions of bounded variation;
 - Classes of concave functions;
 - :
- Other measures of complexity also exist, such as the VC dimension and entropy with bracketing.
- For vector-valued function classes, investigations on their metric entropies have not received much attention.

Entropy of Vector-Valued Function Classes

Challenges

• If \mathcal{Y} is infinite-dimensional, seemingly trivial function classes such as the class of constant functions onto the unit ball,

$$\mathcal{G} = \{g(x) = y \text{ for all } x \in \mathcal{X} : y \in \mathcal{Y}, ||y||_{\mathcal{Y}} \le 1\}$$

have infinite entropy.

Entropy of Vector-Valued Function Classes

Challenges

• If \mathcal{Y} is infinite-dimensional, seemingly trivial function classes such as the class of constant functions onto the unit ball,

$$\mathcal{G} = \{g(x) = y \text{ for all } x \in \mathcal{X} : y \in \mathcal{Y}, ||y||_{\mathcal{Y}} \le 1\}$$

have infinite entropy.

• To have any chance, it is clear that the output range has to be restricted in more than the norm sense.

Set-Up

• Let $\mathcal X$ be any input domain, and let the output space $\mathcal Y$ be a *(not necessarily finite-dimensional) Hilbert space.*

Set-Up

- Let $\mathcal X$ be any input domain, and let the output space $\mathcal Y$ be a *(not necessarily finite-dimensional) Hilbert space.*
- Let $\mathcal G$ be a class of Bochner-integrable functions $g:\mathcal X\to\mathcal Y.$

Set-Up

- Let $\mathcal X$ be any input domain, and let the output space $\mathcal Y$ be a *(not necessarily finite-dimensional) Hilbert space.*
- Let $\mathcal G$ be a class of Bochner-integrable functions $g:\mathcal X \to \mathcal Y.$
- Let X be a random variable taking values in \mathcal{X} , and $X_1, X_2, ...$ i.i.d. copies of it.

Fractal Dimensions

• Let *E* be a subset of (\mathcal{Z}, ρ) . The *upper box-counting* dimension of *E* is

$$\tau_{\mathsf{box}}(E) := \limsup_{\delta \to 0} \frac{H(\delta, E, \rho)}{-\log \delta}.$$

Fractal Dimensions

• Let *E* be a subset of (\mathcal{Z}, ρ) . The *upper box-counting* dimension of *E* is

$$\tau_{\mathsf{box}}(E) := \limsup_{\delta \to 0} \frac{H(\delta, E, \rho)}{-\log \delta}.$$

• A subset E of (\mathcal{Z}, ρ) is said to be (M, τ) -homogeneous (or simply homogeneous) if the intersection of E with any closed ball of radius R can be covered by at most $M\left(\frac{R}{r}\right)^{\tau}$ closed balls of smaller radius r.

- Let $m, d \in \mathbb{N}$, $B \subset \mathcal{Y}$ and \mathcal{X} the unit cube in \mathbb{R}^d .
- Let \mathcal{G}_B^m be the set of m-times differentiable functions $g:\mathcal{X}\to\mathcal{Y}$ such that:
 - partial derivatives $D^pg: \mathcal{X} \to \mathcal{Y}$ of orders $[p] \leq m$ exist everywhere on the interior of \mathcal{X} , and
 - $D^p g(x) \in B$ for all $x \in \mathcal{X}$ and $[p] \leq m$.

- Let $m, d \in \mathbb{N}$, $B \subset \mathcal{Y}$ and \mathcal{X} the unit cube in \mathbb{R}^d .
- Let \mathcal{G}_B^m be the set of m-times differentiable functions $g:\mathcal{X}\to\mathcal{Y}$ such that:
 - partial derivatives $D^pg: \mathcal{X} \to \mathcal{Y}$ of orders $[p] \leq m$ exist everywhere on the interior of \mathcal{X} , and
 - $D^p g(x) \in B$ for all $x \in \mathcal{X}$ and $[p] \leq m$.

Theorem 4

Let $B\subset \mathcal{Y}$ be totally bounded and (M, τ_{asd}) -homogeneous. Then for sufficiently small $\delta>0$, there exists some constant K depending on K_B , m, d, M and τ_{asd} such that

$$H\left(\delta, \mathcal{G}_{B}^{m}, \|\cdot\|_{\infty}\right) \leq K\delta^{-\frac{d}{m}}.$$

Theorem 5

Let B be a subset of $\mathcal Y$ with finite upper box-counting dimension τ_{box} . Then for sufficiently small $\delta>0$, there exists some constant K depending on K_B , m, d and τ_{box} such that

$$H\left(\delta,\mathcal{G}_{B}^{m},\|\cdot\|_{\infty}\right)\leq K\delta^{-\frac{d}{m}}\log\left(\frac{1}{\delta}\right).$$

Theorem 5

Let B be a subset of $\mathcal Y$ with finite upper box-counting dimension au_{box} . Then for sufficiently small $\delta>0$, there exists some constant K depending on K_B , m, d and au_{box} such that

$$H\left(\delta, \mathcal{G}_{B}^{m}, \|\cdot\|_{\infty}\right) \leq K\delta^{-\frac{d}{m}}\log\left(\frac{1}{\delta}\right).$$

Theorem 6

Let B be a subset of $\mathcal Y$ with $N(\epsilon,B,\|\cdot\|_{\mathcal Y}) \leq \exp\{M\epsilon^{-\tau_{\exp}}\}$ for some $M,\tau_{\exp}>0$. Then for sufficiently small $\delta>0$, there is some constant K depending on K_B , m, d, M and τ_{\exp} such that

$$H\left(\delta, \mathcal{G}_{B}^{m}, \|\cdot\|_{\infty}\right) \leq K\delta^{-\left(\frac{d}{m} + \tau_{\exp}\right)}.$$

Applications

• Uniform law of large numbers of \mathcal{G}_B^m for B satisfying any of the previous theorems.

Applications

- Uniform law of large numbers of \mathcal{G}_B^m for B satisfying any of the previous theorems.
- Regression with smooth functions, where the output space itself consists of smooth (real-valued) functions, or any other real-valued function classes with appropriately bounded entropies.

Applications

- Uniform law of large numbers of \mathcal{G}_B^m for B satisfying any of the previous theorems.
- Regression with smooth functions, where the output space itself consists of smooth (real-valued) functions, or any other real-valued function classes with appropriately bounded entropies.
- Kernel conditional mean embeddings, where the outputs consist of functions taking values in an RKHS.

 Despite the growth of literature on vector-valued learning, empirical process theory only exists for real-valued functions.

- Despite the growth of literature on vector-valued learning, empirical process theory only exists for real-valued functions.
- Our work attempts to make some first steps in developing empirical process theory for vector-valued functions.

- Despite the growth of literature on vector-valued learning, empirical process theory only exists for real-valued functions.
- Our work attempts to make some first steps in developing empirical process theory for vector-valued functions.
- Future directions:
 - entropy of function classes other than those of smooth functions;
 - infinite-dimensional input spaces;
 - uniform central limit theorems;
 - lower bounds... and many more.