Publications

This page lists publications that appeared after September 2022. Prior publications can be found at here.

(*,† indicate equal contributions)

2025

  1. Regulation
    Strategic Learning with Local Explanations as Feedback
    Kiet QH Vo , Siu Lun Chau , Masahiro Kato , Yixin Wang , Krikamol Muandet
    arXiv preprint arXiv:2502.04058, 2025
  2. Bayesian Opt.
    Bayesian Optimization for Building Social-Influence-Free Consensus
    Masaki Adachi , Siu Lun Chau , Wenjie Xu , Anurag Singh , Michael A Osborne , Krikamol Muandet
    arXiv preprint arXiv:2502.07166, 2025
  3. Causality
    Causal Order: The Key to Leveraging Imperfect Experts in Causal Inference
    Aniket Vashishtha , Abbavaram Gowtham Reddy , Abhinav Kumar , Saketh Bachu , Vineeth N Balasubramanian , Amit Sharma
    In The Thirteenth International Conference on Learning Representations, 2025
  4. Testing
    Credal Two-sample Tests of Epistemic Ignorance
    Siu Lun Chau , Antonin Schrab , Arthur Gretton , Dino Sejdinovic , Krikamol Muandet
    In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS) 2025, 2025

2024

  1. Causality
    Causal strategic learning with competitive selection
    Kiet QH Vo , Muneeb Aadil , Siu Lun Chau , Krikamol Muandet
    In Proceedings of the AAAI Conference on Artificial Intelligence, 2024
  2. Prediction
    Domain Generalisation via Imprecise Learning
    Anurag Singh , Siu Lun Chau , Shahine Bouabid , Krikamol Muandet
    In International Conference on Machine Learning, 2024
  3. Prediction
    Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections
    Anurag Singh* , Mahalakshmi Sabanayagam* , Krikamol Muandet , Debarghya Ghoshdastidar
    Transactions on Machine Learning Research, 2024
  4. Bayesian Opt.
    Highly Parallel Optimisation of Nickel-Catalysed Suzuki Reactions through Automation and Machine Intelligence
    Joshua W Sin , Siu Lun Chau , Ryan P Burwood , Kurt Püntener , Raphael Bigler , Philippe Schwaller
    2024
  5. Causality
    Learning Counterfactually Invariant Predictors
    Francesco Quinzan , Cecilia Casolo , Krikamol Muandet , Yucen Luo , Niki Kilbertus
    Transactions on Machine Learning Research, 2024
  6. Bayesian Opt.
    Looping in the Human: Collaborative and Explainable Bayesian Optimization
    Masaki Adachi , Brady Planden , David Howey , Michael A Osborne , Sebastian Orbell , Natalia Ares , Krikamol Muandet , Siu Lun Chau
    In International Conference on Artificial Intelligence and Statistics, 2024

2023

  1. Causality
    Instrumental variable regression via kernel maximum moment loss
    Rui Zhang , Masaaki Imaizumi , Bernhard Schölkopf , Krikamol Muandet
    Journal of Causal Inference, 2023
  2. Learning
    Towards empirical process theory for vector-valued functions: Metric entropy of smooth function classes
    Junhyung Park , Krikamol Muandet
    In International Conference on Algorithmic Learning Theory, 2023
  3. Prediction
    Gated Domain Units for Multi-source Domain Generalization
    Simon Föll* , Alina Dubatovka* , Eugen Ernst† , Siu Lun Chau† , Martin Maritsch , Patrik Okanovic , Gudrun Thaeter , Joachim M Buhmann , Felix Wortmann , Krikamol Muandet
    Transactions on Machine Learning Research, 2023
  4. Causality
    A measure-theoretic axiomatisation of causality
    Junhyung Park , Simon Buchholz , Bernhard Schölkopf , Krikamol Muandet
    Advances in Neural Information Processing Systems, 2023
  5. Explainability
    Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
    Siu Lun Chau , Krikamol Muandet* , Dino Sejdinovic*
    Advances in Neural Information Processing Systems, 2023
  6. Causality
    On the Relationship Between Explanation and Prediction: A Causal View
    Amir-Hossein Karimi , Krikamol Muandet , Simon Kornblith , Bernhard Schölkopf , Been Kim
    In International Conference on Machine Learning, 2023

2022

  1. Learning
    Impossibility of collective intelligence
    Krikamol Muandet
    arXiv preprint arXiv:2206.02786, 2022
  2. Prediction
    Sufficient invariant learning for distribution shift
    Taero Kim , Subeen Park , Sungjun Lim , Yonghan Jung , Krikamol Muandet , Kyungwoo Song
    arXiv preprint arXiv:2210.13533, 2022