Publications

This page lists publications that appeared after September 2022. Prior publications can be found at here.

(*,† indicate equal contributions)

2025

  1. Causality
    When Shift Happens - Confounding Is to Blame
    Abbavaram Gowtham Reddy, Celia Rubio-Madrigal, Rebekka Burkholz, Krikamol Muandet
    preprint, 2025
  2. Probability Theory
    Integral Imprecise Probability Metrics
    Siu Lun Chau, Michele Caprio, Krikamol Muandet
    preprint, 2025
  3. Explainability
    Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods
    Majid Mohammadi, Siu Lun Chau, Krikamol Muandet
    preprint, 2025
  4. Regulation
    Explanation Design in Strategic Learning: Sufficient Explanations that Induce Non-harmful Responses
    Kiet QH Vo, Siu Lun Chau, Masahiro Kato, Yixin Wang, Krikamol Muandet
    preprint, 2025
  5. Probability Theory
    Truthful Elicitation of Imprecise Forecasts
    Anurag Singh, Siu Lun Chau, Krikamol Muandet
    In Uncertainty in Aritificial Intelligence (UAI), 2025
  6. Kernels
    Kernel Quantile Embeddings and Associated Probability Metrics
    Masha Naslidnyk, Siu Lun Chau, F-X Briol, Krikamol Muandet
    In International Conference on Machine Learning (ICML), 2025
  7. Prediction
    Teaching Transformers Causal Reasoning through Axiomatic Training
    Aniket Vashishtha, Abhinav Kumar, Atharva Pandey, Abbavaram Gowtham Reddy, Kabir Ahuja, Vineeth N Balasubramanian, Amit Sharma
    In International Conference on Machine Learning (ICML), 2025
  8. Causality
    Causal Order: The Key to Leveraging Imperfect Experts in Causal Inference
    Aniket Vashishtha, Abbavaram Gowtham Reddy, Abhinav Kumar, Saketh Bachu, Vineeth N Balasubramanian, Amit Sharma
    In The Thirteenth International Conference on Learning Representations, 2025
  9. Testing
    Credal Two-sample Tests of Epistemic Ignorance
    Siu Lun Chau, Antonin Schrab, Arthur Gretton, Dino Sejdinovic, Krikamol Muandet
    In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS), 2025
  10. Bayesian Opt.
    Bayesian Optimization for Building Social-Influence-Free Consensus
    Masaki Adachi, Siu Lun Chau, Wenjie Xu, Anurag Singh, Michael A Osborne, Krikamol Muandet
    preprint, 2025
  11. Bayesian Opt.
    Highly Parallel Optimisation of Nickel-Catalysed Suzuki Reactions through Automation and Machine Intelligence
    Joshua W Sin, Siu Lun Chau, Ryan P Burwood, Kurt Püntener, Raphael Bigler, Philippe Schwaller
    Nature Communication, 2025
  12. Prediction
    Sufficient invariant learning for distribution shift
    Taero Kim, Subeen Park, Sungjun Lim, Yonghan Jung, Krikamol Muandet, Kyungwoo Song
    Computer Vision and Pattern Recognition (CVPR), 2025

2024

  1. Causality
    Causal strategic learning with competitive selection
    Kiet QH Vo, Muneeb Aadil, Siu Lun Chau, Krikamol Muandet
    In Proceedings of the AAAI Conference on Artificial Intelligence, 2024
  2. Prediction
    Domain Generalisation via Imprecise Learning
    Anurag Singh, Siu Lun Chau, Shahine Bouabid, Krikamol Muandet
    In International Conference on Machine Learning, 2024
  3. Prediction
    Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections
    Anurag Singh*, Mahalakshmi Sabanayagam*, Krikamol Muandet, Debarghya Ghoshdastidar
    Transactions on Machine Learning Research, 2024
  4. Causality
    Learning Counterfactually Invariant Predictors
    Francesco Quinzan, Cecilia Casolo, Krikamol Muandet, Yucen Luo, Niki Kilbertus
    Transactions on Machine Learning Research, 2024
  5. Bayesian Opt.
    Looping in the Human: Collaborative and Explainable Bayesian Optimization
    Masaki Adachi, Brady Planden, David Howey, Michael A Osborne, Sebastian Orbell, Natalia Ares, Krikamol Muandet, Siu Lun Chau
    In International Conference on Artificial Intelligence and Statistics, 2024

2023

  1. Causality
    Instrumental variable regression via kernel maximum moment loss
    Rui Zhang, Masaaki Imaizumi, Bernhard Schölkopf, Krikamol Muandet
    Journal of Causal Inference, 2023
  2. Learning
    Towards empirical process theory for vector-valued functions: Metric entropy of smooth function classes
    Junhyung Park, Krikamol Muandet
    In International Conference on Algorithmic Learning Theory, 2023
  3. Prediction
    Gated Domain Units for Multi-source Domain Generalization
    Simon Föll*, Alina Dubatovka*, Eugen Ernst†, Siu Lun Chau†, Martin Maritsch, Patrik Okanovic, Gudrun Thaeter, Joachim M Buhmann, Felix Wortmann, Krikamol Muandet
    Transactions on Machine Learning Research, 2023
  4. Causality
    A measure-theoretic axiomatisation of causality
    Junhyung Park, Simon Buchholz, Bernhard Schölkopf, Krikamol Muandet
    Advances in Neural Information Processing Systems, 2023
  5. Explainability
    Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models
    Siu Lun Chau, Krikamol Muandet*, Dino Sejdinovic*
    Advances in Neural Information Processing Systems, 2023
  6. Causality
    On the Relationship Between Explanation and Prediction: A Causal View
    Amir-Hossein Karimi, Krikamol Muandet, Simon Kornblith, Bernhard Schölkopf, Been Kim
    In International Conference on Machine Learning, 2023

2022

  1. Learning
    Impossibility of collective intelligence
    Krikamol Muandet
    arXiv preprint arXiv:2206.02786, 2022